
Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 161 | P a g e

Security Metrics and Software Development Progression

Smriti Jain*, Maya Ingle**

*(Department of Computer Science, SJHSGICCS, Indore, India)

** (School of Computer Science and IT, Devi Ahilya Vishwavidhyala, Indore, India)

ABSTRACT
The quantitative assessment of security can help to analyze security qualitatively. The phase-wise discussion of

security metrics provides a roadmap to the developers to estimate software security during various stages of

software development. In this paper, we suggest metrics based on security issues of software development

process. Further, we provide effectiveness factors for the security consideration during the development process.

Case studies illustrate the use and importance of suggested metrics and effectiveness factors. The metrics

developed may help the developers to understand and analyze security efforts throughout the software

development process.

Keywords – effectiveness factor, security metrics, software development process

I. INTRODUCTION
Measuring security plays an important role

in order to mitigate vulnerabilities thereby producing

more secured end product. Primary goal of metrics is

to quantify data that facilitates insight towards some

quality parameter of the software product [1].

Security metrics can be used for assessing security

related (im)perfections introduced during software

development process [2]. Metrics serve as a basis for

software project planning and are also beneficial for

organizing, controlling and improving the software

development activities [3]. It can be used for

decision support, especially in assessment and

prediction regarding the quality of the software [4].

Thus, security metrics helps to monitor the

performance and identify the failure points or

anomalies in a software system. It supports effective

decision making regarding securing a system. It

serves as a basis to state the degree of safety to avoid

imminent danger.

Most of the security metrics may act as a

support for assessing security at the system level.

Some of the metrics are incident management,

vulnerability management, patch management,

application security, configuration management, and

financial management [5]. The defect rate metrics

for the software product is calculated over a time

period. It shall help improve the code quality during

the next release of the software product [6]. NISTIR-

7502 describes the Common Configuration Scoring

System (CCSS), a set of standardized measures for

the characteristics and impacts of software security

configuration issues [8]. Some of these metrics either

require full system implementation before assessing

the security of the system while others can assess

security during later stages of system development.

Metrics may assist in evaluating

the software artifacts and promote security

considerations during early stages of Software

Development Process (SDP). A number of security

metrics have been defined for development process

of a Web application that fall in the category of

design time metrics, run time metrics, and

deployment time metrics [9]. Security metrics for

testing phase of Web based applications include Test

Plan Coverage, Test Case Defect Density,

Requirement Volatility, Defect Removal

Effectiveness, Testing efficiency, etc. [7]. A set of

metrics have been defined that address security risks

throughout SDP such as Ratio of Security

requirements, Ratio of design decisions using Goal/

Question/ Metric method [10]. Various available

security metrics have been discussed and analyzed

for secured SDP as well as product security [12].

Literature review reveals that most of the metrics

either describes the security aspect of the software,

assess only security risks, or focus on some stage of

SDP. The current practice of security metrics is a

very diverse field and hence widely accepted metrics

are still missing. Moreover, the metrics do not

address the security issues of the various stages of

SDP. In this regard, we propose some proactive

metrics to address all the stages of SDP. To judge the

security efforts of the development team, we have

suggested effectiveness factors for some of the SDP

stages.

In this paper, various security metrics and

effectiveness factors have been proposed that address

software development phases. In Section 2, we

elaborate the proposed metrics covering different

stages of SDP along with the effectiveness factors for

security consideration. In Section 3, we provide three

case studies based on different domains to analyze

metrics and effectiveness factors. Results are

discussed on the basis of case studies in Section 4

while we conclude in Section 5 with conclusion.

RESEARCH ARTICLE OPEN ACCESS

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 162 | P a g e

II. PROPOSED SECURITY METRICS AND

EFFECTIVENESS FACTOR
In this section, we propose security metrics

that focus on security issues of the software

development stages. Based on the security metrics,

we also attempt to develop Effectiveness Factor (EF)

for the software development phases. EF can help

judge the security efforts during development. On the

basis of security metrics, we collected data for fifteen

live software projects using self designed

questionnaire. These projects have been developed

using platforms such as Java, PHP, .NET, MySQL,

C#, AJAX, Jquery, Microsoft SSRS, Unix shell script

etc. The implementation relate to various network

designs such as client/ server system, web

technology, web sites, mobile and desktop based

systems. The size of projects may vary from small to

very large.

2.1 Requirements Gathering and Analysis

(Phase I)
This phase focuses on gathering security

requirements along with the functional requirements.

The security requirements can be gathered from the

stakeholders by the help of misuse cases, attack trees

etc. [14]. In this section we discuss security metrics

of requirements gathering stage and the effectiveness

factor.

2.1.1 Phase I Metrics

 The metrics of this phase measures the impact

of security considerations on software development.

The metrics defined are direct measures and are

internal performance indicators.

 Number of Security Requirements Gathered

(NSRG) – It measures the number of security

requirements gathered during Phase I. It consists

of security requirements that may be gathered

using tools such as SQUARE as well as from the

stakeholders using Software Security

Requirements Gathering Instrument (SSRGI)

[13]. If SR and TR denote security requirements

from stakeholders and tools respectively, then

TRSRNSRG 

 Security Requirements Recorded Deviations

(SRRD) – It describes the number of deviations

from security requirements. The deviations can

be measured on the basis of requirements

specifications considered during design.

 Security Requirements stage Security Errors

(SRSE) – The metric SRSE indicates the number

of security errors that are result of incorrect or

incomplete security requirements.

 Security Requirements Gathering Indicators

(SRI) – Indicators on Requirements gathering

and analysis stage explain the impact of security

requirements on number of security breaches.

2.1.2 Phase I EF

The security efforts of the development team

of requirements gathering stage can be evaluated by

identifying and establishing the relationship between

the metrics.

 Let there exists one independent metrics X and

n number of dependent metrics as y1, y2,… ,yn. Y be

the sum of all n metrics representing total effect by

independent metric X. Applying Least Square

Method to identify the relationship, we get

Y = C - α·X --- (1)

where, C is constant and is calculated as sum of

intercepts generated for each pair of metric. α is the

EF of X on Y and can be computed from Equation 1.

α = (C-Y)/X --- (2)

The domain of Phase I metrics consists of

independent and dependent metrics. Based on

practicality, the dependent metrics may consist of

SRRD, SRSE and SRI while NSRG may be considered

as independent metric.

 The value of constant C is obtained using

Equation 1 for the metrics pair NSRG and SRRD,

NSRD and SRSE, NSRG and SRI. The combined

effect of independent variable X (NSRG) on

dependent variable Y (sum of SRRD, SRSE and SRI)

can be expressed as

α = (5.2421 – Y)/ NSRG --- (3)

 where NSRG ≠ 0

EF of -1 may reveal that the entire SDP may

not have considered security. Zero EF may entail the

sum of dependent metrics Y equals C while X can

take any value. It shows that the security deviations

from requirements and errors are recorded even

though security requirements are not gathered,

leading to trivial situation. α as one may occur when

Y=C-X. This may also lead to trivial case when the

numbers of security requirements gathered are high

as Y may acquire negative value. The value of EF

greater than 1 implies that X is very less and thus the

effectiveness of the metrics cannot be judged.

2.2 Software Design (Phase II)
To enhance security in the design , the

design stage should consider Non-functional Security

Requirements (NFSR), security aspects, exceptions

handling and error messages as well as identification

and authorization of users [13][14]. The following

subsections demonstrate the metrics and effectiveness

factor of software design stage.

2.2.1 Phase II Metrics

Requirements and design are indispensable

phases of SDP. Hence, requirements specifications

shall be considered for design proposal and analysis

of design generates the need for further requirements

[15].

 Security Requirements Statistics (SRS) – The

metric SRS indicates the percent of security

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 163 | P a g e

requirements gathered reflected in the design

stage. If NSRD is Number of Security

Requirements considered for Design, SRS can be

defined as the ratio of NSRD and NSRG

expressed as percentage.

 Design Tools and Test Effectiveness (DTTE) –

The design can be analyzed for security using

tools such as misuse cases, threat analysis, attack

patterns etc. These tools can also be used to

consider security requirements. This can be

represented by Secure Analysis of Design by

Tools (SADT). Further, the use of test cases to

analyze secured design aspects is indicated by

Number of Test Cases for Secured System

Design (NTSSD). The Number of Aspects for

Secured Design (NASD) represents the security

driven aspects. It designates the design aspects

considered from architectural design

requirements and implicit requirements such as

exception handling, input validation, authenticity

checks etc. Thus, NASD can be expressed as

sum of Number of Aspects using architectural

Design Standards (NADStd), Number of Implicit

Security Design Aspects (NISDA) and NSRD.

Here, NISDA consists of implicit security

requirements such as exception handling, input

validations, check for authentication etc. The

metric DTTE is represented as ratio of the sum of

tools to analyze security and NASD i.e. DTTE =

(SADT+NTSSD)/NASD where NASD ≠ 0. or,

)()(NSRDNISDANADStdNTSSDSADTDTTE 

 Number of Design stage Security Errors (NDSE)

– It is indicated by measuring the number of

security errors due to design stage. The metric

specifies the design flaws that owe to the

negligence of security by the software

development team.

2.2.2 Phase II EF

On the basis of paired t-test, relationship has

been has been indicated among the metrics DTTE is

NDSE. The metrics pair is further evaluated resulting

in negative correlation. Thus, the metrics DTTE and

NDSE are inversely proportional i.e. NDSE α

1/DTTE. Then, NDSE = β/DTTE

or β =NDSE · DTTE --- (4)

here β is the effectiveness of design stage where β

>= 0. β = 0 implies that the testing is highly effective

and there are no security errors due to design stage.

As evident from Equation 4, the value for β shall lie

between 0 and 1. It can be interpreted as highly

effective (0-0.25), moderately effective (0.26-0.50),

effective (0.51-0.75), ineffective (0.75-1.00) and very

ineffective (>1.00) security considerations during

design stage.

2.3 Coding (Phase III)
During coding phase, security can be

implemented by validating input, output, reused code,

following good programming practices and coding

standards. The metrics and effectiveness factor of this

stage are discussed in the following subsections.

2.3.1 Phase III Metrics

Coding phase metrics can help judge the

secure coding efforts of the developers. It shall

indicate the use of secure coding aspects and

standards thereby identify the security errors.

 Percent of Secure Coding Aspects (PSCA) – The

metric identifies the percentage of security

aspects considered during coding as per the

design. The security coding aspects can be

derived from Secure Development Requirements

(SDR) [13]. PSCA can be represented as the

ratio of Number of Security Coding Aspects

(NSCA) and NASD expressed in percentage.

 Percent use of Coding Standards (PCS) – The

metric indicates the use of coding standards for

secured development. It may act as an estimate

for the metric Number of Security Errors (NSE).

It shall support in identifying the consideration

of security standards during code

implementation.

 Numbers of Security Errors (NSE) – The coding

errors are the result of the use of unsafe

functions, illogical access control, typographical

errors etc. Errors are also due to code used from

other libraries [14]. NSE represents the flaws

that can be expressed as the sum of coding errors

and errors due to code from other libraries

thereby identifying the trustworthiness of the

code.

2.3.2 Phase III EF

By applying paired t-test, it has been

established that NSE is the result of considering

PSCA and NSE. Variable X (sum of PSCA and

PCS) is an independent variable while dependent

variable Y is NSE. Thus, applying Least Square

Method on X and Y to establish relation between X

and Y, we get Y = C - γ·X where, C is constant and γ

is effectiveness of PSCA and PCS on NSE. γ can be

calculated as

γ = (C-Y)/X --- (5)

 where, X>0

 Using Equation 5, the combined effect of PSCA

and PCS on NSE is given by

γ = (8.4022 – NSE)/ (PSCA+PCS) --- (6)

The negative one EF of this phase may show

that value of independent metrics is large such that

sum of independent variables and C equals NSE

resulting in significantly large NSE. Further, zero EF

may specify that NSE is a moderately high constant

(NSE=8.4 approx.) and is not dependent on sum of

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 164 | P a g e

metrics PACS and PCS. EF as one may signify that Y

= C-X, i.e. number of independent metrics should be

less that 8.4. It also tells that if X increases, then Y

decreases. Lower value of Y may indicate that

security is considered from design aspects as well as

security coding standards.

2.4 System Integration and Testing (Phase IV)
Testing the software for security is aimed to

check if the software meets the specified security

requirements, and the left security vulnerabilities.

2.4.1 Phase IV Metrics

The metrics of this phase shall help in

determining the effectiveness of security testing as

well as consideration of security requirements

considered during testing

 Security Requirements Considered for Testing

(SRT) – It shows the development of software

system as per the security requirements being

gathered. The metric SRT can be represented by

the ratio of the security requirements tested and

NSRG, where NSRG ≠ 0. If all the security

requirements have been tested, it may be

indicated by one.

 Process Effectiveness (PE) – The metric may

reveal the security concerns during SDP. It can

be evaluated as the ratio between the Numbers of

security vulnerabilities discovered (NVD) and

Count of Modules undergone security testing

(MST) i.e. PE = NVD / MST , where MST ≠ 0.

 Security Testing Ratio (STR) – It can be

expressed as the ratio of modules undergone

security testing to the total number of modules.

STR may support in judging the modules subject

to security testing.

2.4.2 Phase IV EF

The paired t-test indicates that the metric PE

is not determined by STR and SRT thus, EF cannot be

judged.

2.5 Operations and Maintenance (Phase V)
During operations and maintenance phase, a

number of security flaws can creep in due to the

changes in the system or environment. Periodic risk

review and vulnerability assessments, security

awareness programs, performing auditing, logging,

monitoring, archiving can reduce security related

flaws.

2.5.1 Phase V Metrics

The proposed metrics of this phase may help

to ensure that the changes are completed within time;

the threats found are taken care of, and help in the

awareness of new vulnerabilities.

 Mean Time to Complete Security Changes

(MTCSC) - The metric MTCSC can be

estimated by the number of security failures and

mean time taken to repair the flaws. Thus, it

provides an indication regarding failure of

system due to security flaws. MTTSF and MTTR

are obtained as average of all security related

failure of a system and time taken to repair the

failure [16]. The metric is recorded over certain

time period and may support in risk assessment.

 MTCSC = MTTSF + MTTR

 where MTTSF is Mean Time to Security Failure

 MTTR is Mean time to Repair

 Percent of Changes with Security Exceptions

(PCSE) – The metric PCSE indicates the

percentage of configuration or system changes

that received an exception to existing security

policy [17]. The metric can be calculated as the

ratio of counts of completed changes with

security exceptions and completed changes

multiplied by 100. It depicts security concerns

during the maintenance phase.

 Rate of Vulnerability Assessments (RVA) –

RVA can be expressed as the number of

vulnerability assessments during one quarter. It

indicates the number of security reviews

performed by the development team in a specific

time period.

 Ratio of changes due to security consideration

(Rsc) - It measures the number of changes in the

system requirements due to new set of security

requirements including the need for system

patches [10]. It has been defined as the number

of changes triggered by new security

requirements / The number of changes of the

entire system.

2.5.2 Phase V EF

 The effectiveness factor cannot be judged

among the metrics. It has been indicated by applying

paired t-test between PCSE and Rsc.

2.6 Documentation (Phase VI)
The document must state the security

controls implemented in the software system for its

proper functioning. It must also state the

responsibilities of the various users along with the

functional and non-functional security features.

 Number of Security Controls Mentioned

(NSCM) – The metric NSCM indicates the

number of security controls implemented in the

software such as access control, disable inactive

accounts automatically, account recovery

method, etc. The value of NSCM helps to

identify the security controls being implemented.

III. CASE STUDIES
In this Section, we present three case studies

to demonstrate the effectiveness of security efforts

during the software development process with the

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 165 | P a g e

help of the metrics and effectiveness factors

developed in Section 2. The case studies are based on

web, client/ server, and single user desktop system.

Case I - Web-based System
Journal Publishing System (JPS) is a Web-

based publishing system designed for scholarly

researchers worldwide. The system is intended for

the researchers, scholars, institutions and other

interested users. It is designed to assist editors by

automating the article submission by contributors,

article review and publishing process thereby

maximizing efficiency. It facilitates communication

between editors, authors and reviewers via E-mail

and preformatted reply forms. The system maintains

database of the subscribers, editors, reviewers, article

submitted, accepted, rejected and published. JPS

accepts the article online and forward it to the

reviewers according to the area of interest. Based on

the feedback from the reviewers, the contributor is

informed regarding acceptance or rejection of the

article. If accepted, JPS accepts camera ready copy of

the article along with the publication fee and

publishes the article in next issue. The publication fee

can be accepted through Visa/ Master card using

online system, swift transfer or DD/ Cheque. JPS is a

Red Hat Linux EL4 based system developed using

PHP 5.x and above with database MySQL 5.x on

Apache 2.x server. The measures and metrics of SDP

stages for JPS are depicted in Table 1.

Case 2 - Client/ Server based System
Patient Management System (PMS) is a

client/ server based system implemented on LAN that

allows the hospitals to keep track of the patient’s

data. It aids in the management of personalized

patient record, physicians, and other hospital staff.

The system registers patients, doctors, nurses, social

workers, and dieticians. It supports internal

messaging among various users. It allows

generating the list of patients with their ailments,

medications and test reports (if suggested), and the

doctor and nurses in-charge of the same. The

system also permits to view the case history of the

patients and fix appointment with the doctor. JPS

generates reports on birth and death records,

diagnosis of patients with medicines, billing and

payment. The system is developed using .NET

Framework with SQL Server 2008 Express as

database software. The metrics for PMS are

presented in Table 1.

Case 3 - Desktop based System

Learning System (LS) is a desktop based

system having a set of innovative educational

applications for students, teachers and educators.

Table 1: Trend of Metrics for Different Projects

S.

N

o

Software

Development

Stages

Projects

Metrics

Web-

based

(JPS)

Client/

Server

(PMS)

Desktop

(LS)

1
Requirements

Gathering

and Analysis

NSRG 8 22 5

2 SRRD 0 2 0

3 SRSE 1 6 0

4 SRI 1 3 0

5
Software

Design

SRS 62.5% 72.7% 80%

6 DTTE 0.41 0.39 0.38

7 NDSE 1 2 0

8

Coding

PSCA 70.59% 45.5% 30.8%

9 PCS 20% 25% 20%

10 NSE 7 15 4

11 System

Integration

and Testing

SRT 1 0.81 1

12 PE 0.5 1.11 0

13 STR 0.40 0.75 0.6

14
Operations

and

Maintenance

MTCSC 17 days 16 days NA

15 PCSE 30% 55.5% 0

16 RVA 4/qtr. 3/qtr NA

17 Rsc 0.2 0.33 0

18 Documentatio

n

NSCM 6 5 5

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 166 | P a g e

These applications are classified into various

categories such as Create, Collaborate, Teach,

Research etc. The application can be used in different

languages. LS is developed using .NET platform.

The metrics for Learning System are illustrated in

Table 1.

IV. RESULTS
The trend of metrics for the various case

studies is depicted in Table 1 while the effectiveness

factors are illustrated in Table2. On the basis of the

case studies following observations can be made:

 The α value shows moderate security

considerations during the development of web-

based software. This is inline with the fact that

security is a major issue in web-based systems.

 The β value for desktop based system signifies

that no security errors have been detected in its

design.

 In a web-based, client/ server and desktop based

systems, the γ values indicate that the coding

errors are low in these systems as compared to

client/ server based system. The values may be

the result of the coding errors. This might be due

to low experienced software professionals in the

area of secured coding.

 Operations and maintenance phase metric PCSE

implies that the out of all changes expected in a

web-based system, only 30% have been related

to security policies. It shows moderately high

security concerns during earlier stages of

software development resulting in less security

exceptions.

 Low documentation of security related issues

have been depicted for all types of systems (refer

Table 1).

 Although NSRG is high for PMS, security is not

given enough consideration during the other

stages of software development.

V. CONCLUSION
Rapid advancements in security related

issues have facilitated the development of security

metrics. Security metrics have become the foundation

for secured development process of software.

Right metrics serve to diagnose problems easily and

locate the vulnerable points. In this paper, we

presented a set of metrics and effectiveness factors

for the software development stages. The metrics

aims to evaluate the efforts of the various software

development stages regarding security consideration.

The metrics can help the development team to judge

its performance for security. It may facilitate to focus

on gathering more security requirements, consider

more of implicit security aspects, provide security

training to the development team to help reduce

design and coding flaws etc. Metrics may also act as

a checklist for increasing security aspect of

the software product, i.e. what variables should be

Table 2: Effectiveness Factors

S.No Projects

 EF

Web-

based

(JPS)

Client/

Server

(PMS)

Desktop

(LS)

1 α 0.405 -0.26 1.048

2 α 0.41 0.78 0

3 γ 0.0155 -0.101 0.087

focused to enhance security. It shall support the

developers to improve SDP and may help to predict

vulnerability of the software. Thus, the developed

metrics and effectiveness factors may provide a way

to assess and visualize security during software

development process.

REFERENCES
 [1] A. Jaquith, Security metrics: Replacing fear,

uncertainty, and doubt (Upper Saddle River,

NJ, Pearson Education, Inc., 2007).

[2] I. Chawdhury, B. Chan, and M. Zulkernine,

Security metrics for source code structures,

SESS’08, ACM, May 17-18, 2008, 57-64.

[3] Software metrics guide,

http://sunset.usc.edu/classes/cs577b_2001/m

etricsguide/metrics.html#p1.

[4] R. Savola, A novel security metrics

taxonomy for R&D organizations, ISSA ’08,

Johannesburg, South Africa, Jul. 7-9, 2008,

379-390.

[5] Clare E. Nelson, Security metrics – An

overview, ISSA Journal, Aug. 2010, 12-18.

[6] S. H. Kan, Software quality metrics

overview Metrics and models in software

quality Engineering (Addison-Wesley

Professional, Second Ed., 2002).

[7] Software test metrics (QCon – Train,

Consult, Improve), www.qcon.in/simple%

20metrics.ppt.

[8] K. Scarfone and P.Mell, The common

scoring configuration system: Metrics for

software security configuration

vulnerabilities (National Institute of

Standards and Technology, NISTIR-7502).

[9] E. A. Nichols, G. Peterson, A metrics

framework to drive application security

improvement, Building Security In, IEEE

Security and Privacy, 2007, 88-91.

[10] K. Sultan, A. En-Nouaary, A.H. Lhadj,

Catalog of metrics for assessing security

risks of software throughout the software

development life cycle, In the Proc. of

International Conference on Information

Security and Assurance, IEEE Computer

Society, 2008, 461-465.

[11] J. Allen, Measuring software security,

CERT Research Annual Report, Software

Engineering Institute, Carnegie Mellon

University, 2009, 64-65.

Smriti Jain et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.161-167

 www.ijera.com 167 | P a g e

[12] S. Jain and M. Ingle, A review of security

metrics in software development process,

International Journal of Computer Science

and Information Technologies, 2(6), 2011,

2627-2631.

[13] S. Jain and M. Ingle, Software security

requirements gathering instrument,

International Journal of Advanced

Computer Science and Applications, 2(7),

2011, 116-121.

[14] S. Jain and M. Ingle, Involving security in

software development process – A

suggestive view, In the Proc. of the National

Conference on Emerging Technologies

Electronics, Mechanical and Computer

Engineering, Indore, India, 2010.

[15] B.A. Nuseibeh, Weaving together

requirements and architectures, IEEE

Computer, 34(3), 2001, 115-117.

[16] R. S. Pressman, Software engineering: A

practitioner’s approach, (McGraw Hill, 5
th

Ed., 2001).

[17] The CIS Security Metrics, (Center for

Internet Security, 2009), http://www.letu.Ed

u/people/jaytevis/Software-Engineering/Pre

sentations/Miscellaneous/CIS_Security_M

etrics_v1.0.0.pdf.

http://www.letu.ed/

